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Subharmonic growth by parametric resonance 
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College of Engineering, The University of Texas at Austin, Austin, TX 78712, USA 

(Received 29 Kovember 1990 and in revised form 18 June 1991) 

An experimental investigation is conducted in order to quantify the nonlinear and 
parametric resonance mechanisms that are associated with the subharmonic growth 
in the transition to turbulence in plane mixing layers. Higher-order digital statistical 
analysis techniques are used to investigate the nonlinear and parametric mechanisms 
responsible for the energy transfer to the subharmonic. The results show that the 
dominant interaction is a parametric resonance mechanism between the fundamental 
and the subharmonic modes which leads to a pronounced growth of the subharmonic. 
Measurements also indicate that the fundamental, besides interacting with the 
subharmonic, is also engaged in redistributing its energy to  the other Fourier 
components of the flow via nonlinear three-wave interactions. Local wavenumber 
measurements verify that frequency-wavenumber resonance matching conditions 
exist between the fundamental and subharmonic in the region where the subharmonic 
gains its energy by parametric resonance. The results are in general agreement with 
theoretical models by Kelly (1967), and Monkewitz (1988) on subharmonic 
growth. 

1. Introduction 
Two important features of the transition to turbulence in plane mixing layers are 

the subharmonic growth and vortex pairing. The emergence and subsequent growth 
of a flow component a t  the subharmonic frequency, beyond the initial linear 
instability region, is a good example of secondary instability, and represents the first 
step in the sequence of instabilities that lead to  the final breakdown to turbulence. 
Evidence of the growth of the subharmonic mode has been given in many 
experimental investigations, such as those of Sato (1959), Browand (1966), Miksad 
(1972) and many others. The mechanisms of vortex roll-up and subsequent pairing 
represent the vorticity restructuring in the transitioning mixing layer. Evidence of 
vortex pairing has been observed in the flow visualization pictures of Winant & 
Browand (1974) and Brown & Roshko (1974). Ho & Huang (1982) used 
hydrodynamic instability- wave concepts and flow visualization to compare the 
development of the fundamental and subharmonic modes to  the vortex pairing 
mechanism in mixing layers. Their results showed that the saturation of the 
fundamental mode accompanies the vortex roll-up process, and that the saturation 
of the subharmonic mode accompanies the vortex merging. Also, the analysis of 
Pierrehumbert & Widnall (1982) showed that the emergence of a subharmonic 
component, in the two-dimensional case, may correspond to the pairing of two 
neighbouring vortices. Ho (1982) suggested a simplified model in which the mixing 
layer grows only by the vortex pairing mechanism. I n  general, the enhancement or 
suppression of the spreading mixing layer seems to be dependent on the ability to 
control this vorticity restructuring mechanism and consequently the subharmonic 
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growth. Although the initial development of the mixing layer can be satisfactorily 
described by spatial linear instability analysis, the relationship between subharmonic 
growth and the spectral energy exchanges which accompany vorticity restructuring 
of the transitioning mixing layer remains unknown. This relationship must be 
determined if we are to understand the mechanisms responsible for the subharmonic 
growth and if we are to  determine the most effective way to  control the spreading of 
mixing layers. 

Kelly (1967) showed that the growth of the subharmonic mode in temporally 
developing mixing layers is most probably due to parametric resonance mechanism 
between a periodic component of the mean flow and the disturbances a t  the 
subharmonic frequency. The mean flow periodicity originates from a saturated finite- 
amplitude fundamental mode and is characterized by this mode’s frequency and 
wavenumber. Monkewitz (1988) analysed the fundamental-subharmonic resonant 
interaction mechanism in a spatially growing mixing layer. The results indicated 
that a subharmonic mode evolving according to linear theory will be modified, on a 
slow space and/or time scale, by the presence of the fundamental mode. Monkewitz’s 
spatial analysis, like Kelly’s temporal analysis, assumes that the altered subharmonic 
does not affect the fundamental growth, which strongly suggests that a parametric 
mechanism is a t  work. One distinctive feature of the parametric mechanism is that 
a periodic component of the flow can serve as a means to extract energy from the 
mean flow and feed i t  to the subharmonic without sharing its own energy in the 
process. Also, parametric mechanisms lead to linear differential equations with 
periodic or quasi-periodic coefficients (Nayfeh 1987). In  contrast, nonlinaar resonance 
mechanisms, as defined by Raetz (1959), stem from nonlinear differential equations. 

The analyses of Kelly (1967) and Monkewitz (1988) and their mathematical 
representation of the parametric resonance provide a conceptual and theoretical 
background for the parametric and nonlinear mechanisms associated with the 
subharmonic growth in plane mixing layers. However, experimental evidence and 
quantification of the parametric resonance mechanism are lacking. The spectral 
energy exchanges responsible for the subharmonic growth in the theoretical analyses 
of Kelly (1967) and Monkewitz (1988) remain unsubstantiated. Arguments based on 
the classical power spectra measurements provide no substantiative information on 
the efficiency and location of the nonlinear and parametric energy transfer to  the 
subharmonic mode. Recent developments in digital polyspectral analysis for 
nonlinear systems now allow quantitative measurements of three-wave nonlinear 
couplings and spectral energy transfer. For example, Miksad et al. (1982) used 
complex demodulation and polyspectral analysis to identify the active nonlinear 
interactions in the transition of the wake of a flat plate. Ritz et al. (1988) used 
nonlinear quadratic transfer functions to measure the efficiency of the nonlinear 
interactions between the different modes in the transition to turbulence in a plane 
wake. 

In  this paper the frequency domain characteristics and the nonlinear energy 
transfer between the different modes in the transitioning mixing layer are 
investigated. Experimental evidence of the parametric resonance between the 
fundamental and subharmonic modes is presented. A quantification of the 
role of this mechanism in the subharmonic growth is established. This is done 
by measuring the linear and nonlinear energy transfer functions between the 
different components of the flow. Also, the spatial characteristics of the parametric 
resonance mechanism are discussed. The local phase speeds of the fundamental and 
its subharmonic are measured and experimental evidence for a resonance matching 
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FIGURE 1. Schematic sketch of the wind tunnel apparatus. 

condition in the wavenumber domain for efficient energy exchange via parametric 
resonance is established. 

2. Experimental set-up 
The experiments were conducted in a low-turbulence subsonic wind tunnel with a 

30 x 20 x 150 em test section, see figure 1. The mixing layer was formed by merging 
two laminar streams as shown in figure 2. The upper and lower free-stream velocities 
were U, = 7.17 and U, = 1.51 m/s, respectively. This resulted in a velocity 
differential AU = 5.66 m/s and a velocity ratio R = ( U ,  - U,)/(U,  + U,) = 0.65. The 
initial Reynolds number based on initial momentum thickness and upper free-stream 
velocity was 305. The free-stream turbulence intensity in the vicinity of the trailing 
edge of the splitter plate was 0.0005AU in the high-speed stream, and 0.0011AU in 
the low-speed stream. Most of the background turbulence was concentrated in 
frequencies below 40 Hz. Streamwise velocity fluctuations were measured using a 
DISA 56N/C hot-wire anemometry system. A special probe (Jones et al. 1988) with 
two sensing elements was used in these experiments to measure the spectral energy 
exchanges between two downstream locations, figure 2. The two sensing elements are 
separated in the streamwise direction by a distance Ax = 0.1 em and in the spanwise 
direction by 0.15 em, centre to centre. The cross-stream separation is zero. The small 
spanwise separation is used to isolate the downstream wire from the wake of the 
upstream wire. The hot-wire signals were DC and anti-alias filtered and were sampled 
with a CAMAC digital data acquisition system. The sampling frequency was set a t  
1000 Hz. The results shown here are for natural transition excited by random 
fluctuations in the flow. No external forcing was used. The measured frequency of the 
dominant instability mode of this transition was f,, = 215 Hz. 

3. Mean flow properties 
The time-averaged flow properties were measured at midspan. The average 

velocity, D = +( U ,  + U,) is equal to 4.34 m/s. The initial momentum thickness of the 
high-speed-side free-stream velocity, O,,, is equal to  0.064 em and the streamwise 
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FIGUHE 2. Schematic of the mixing layer and experimental approach. 

wavelength of the dominant instability mode, A,, is equal to 1.98 cm. The Strouhal 
number of the dominant instability mode, f,,8,/0, is equal to 0.0317. In order to 
compare our results with data taken in experiments a t  different values of R, 
lengthscales are normalized with the ratio RIA, = 0.32 as suggested by Huang & Ho 
(1990). The variations in the cross-stream direction of the longitudinal mean velocity 
and total r.m.s. fluctuations a t  different downstream locations are shown in figure 3. 
The mean velocity profiles are normalized according to the relation 2(U(y) - U ) / A U .  
The velocity fluctuations are normalized with AU. The mean flow profiles show a 
combination of a wake and a mixing layer up to RxIA, = 1.0. Beyond this location, 
they become similar to a hyperbolic tangent profile. 

The vertical spreading of the mixing layer is measured by the local momentum 
thickness. defined as 
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FIGURE 3. Cross-stream variations of the normalized mean velocity, 2(U(y) - U ) / A U  (-a-), and 
longitudinal fluctuations, u'/AU (-+-) at different downstream locations: (a) Rx/h, = 0.5; ( b )  
1.0; (c )  1.5; ( d )  2.0; (e) 2.7; (f) 5.0. 

Similarly, an energy thickness, defined as 

is used as a measure of the flux of energy from the mean flow. The downstream 
development of the maximum uims of the fundamental and subharmonic modes are 
shown in figure 4. The development of the energy thickness and the momentum 
thickness are shown in figure 5. 

I n  figure 4, four basic regions of fundamental and subharmonic development are 
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FIGURE 5. Momentum (-m-) and energy (-+-) thicknesses, 0 and E ,  respectively, of the 
mixing layer us. streamwise direction. 

evident. For RxlA, < 1.0, the fundamental and subharmonic modes grow ex- 
ponentially. The non-dimensional growth rate of the fundamental and the 
subharmonic, based on Bo, are 0.10 and 0.047, respectively. These values are within 
6 YO of the values predicted by the spatial linear instability analysis of Monkewitz & 
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Huerre (1982). The region limited by Rxlh, < 1.0 represents the initial instability 
region where the fluctuations components grow exponentially, and will be referred to 
as Region I. At about RxIA, = 1.0, the subharmonic starts deviating from 
exponential growth. This location is chosen for reference because it is the last 
location a t  which the subharmonic amplitude deviates by less than 5% from the 
amplitude predicted by its initial exponential growth. Note that the choice of this 
criterion is subjective and is stated here for the sake of comparison. At this location, 
the r.m.s. amplitude of the longitudinal fluctuations at the fundamental frequency 
has an average value of uims/O = 0.012 (peak value = 0.016). This value is almost 
twice the critical fundamental amplitude of 0.0153R2 = 0.006 predicted by 
Monkewitz (1988). 

At Rx/h, = 1.6, the fundamental achieves a saturation level of 0.1130. This level 
is one order of magnitude larger than that of the critical fundamental amplitude. 
Notice that up this location, figure 5 indicates that the vertical spreading of the 
mixing layer and the extraction of energy from the mean flow are very slow. The 
region between Rxlh, = 1.0 and 1.6 represents a region where the fundamental 
mode continues to grow a t  a rate less than that predicted by the linear theory, to 
eventually equilibrate into finite-amplitude oscillations. This region will be referred 
to as Region 11. 

Between RxIA, = 1.6 and 3.2, the r.m.s. amplitude of the longitudinal fluctuations 
at the fundamental frequency decreases. However, the subharmonic component 
undergoes a second region of growth and achieves a saturation level of the same order 
of magnitude as the fundamental. The region limited by Rxlh, = 1.6 and 3.2 will be 
referred to as the secondary instability region (Region 111). I n  figure 5, we notice that 
a large spreading of the mixing layer also occurs over this region. The momentum 
thickness doubles between Rx/ho = 1.6 and 3.2 indicating that the extraction of 
energy from the mean flow is increasing. If Kelly’s (1967) interaction mechanism is 
correct, this implies that the energy is being extracted from the mean flow and 
transferred to the subharmonic by a parametric resonance mechanism. Beyond 
RxIA, = 3.2, the r.m.s. amplitudes of the longitudinal fluctuations at the fun- 
damental and subharmonic modes start decreasing. This could be the result of the 
second subharmonic, a fo, or the onset of the three-dimensional activities. This region 
will be referred to as Region IV. 

4. Fundamental-subharmonic interaction 
The primary aim of this investigation is to quantify the spectral energy exchanges 

arising from parametric or nonlinear wave-wave interactions that are responsible for 
the subharmonic growth in a plane mixing layer. These interactions can best be 
studied by using polyspectral analysis techniques. The role of these interactions in 
reinforcing the subharmonic can be quantified by measuring quantities such as the 
linear and nonlinear transfer functions. The connection between existing theoretical 
models of subharmonic growth and our use of the transfer function measurements is 
not obvious and the following heuristic model is presented to  motivate this approach. 

4.1. Fundamental-subharmonic energy transfer 
As shown by many investigators and detailed by Mollo-Christensen (1971), the 
turbulent energy transfer from the mean flow to the primary instability components, 
and from the primary instability to the secondary instability components, and vice 
versa, occurs because of nonlinear terms that are present in the equations governing 
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energy exchange. The importance of these terms to the subharmonic generation 
process is evident in the equation governing energy exchanges between the different 
components of the velocity fluctuations, Stuart (1960). Monkewitz (1988), based on 
the experimental results of Ho & Huang (1982) and the discussion of Ho & Huerre 
(1984), assumed that subharmonic behaviour in mixing layers can be considered to 
be locally parallel in the saturation region of each mode in the subharmonic sequence. 
Kelly (1967) made a similar assumption in his temporal analysis. Following 
Monkewitz (1988) and Kelly (1967), the effect of interacting components on the 
growth of the subharmonic component in a parallel flow can be written as 

where $( f,) represents the subharmonic component of the stream function and $( fs) 
and $(fj) represent any two components whose interactions could lead to the 
subharmonic reinforcement. Note that the summation on the left-hand side is 
necessary to take into account all sum and difference interactions that could affect 
the subharmonic component. 

The analyses of Kelly (1967) and Monkewitz (1988) showed that the manifestations 
of the parametric and nonlinear resonance mechanisms are different. In  the nonlinear 
resonance mechanism, energy is passed to  the subharmonic directly from the 
fundamental. In  the parametric resonance mechanism, energy is not directly 
exchanged with the fundamental, but passed from the mean flow to the subharmonic 
as a result of the parametric variations introduced by the fundamental. These 
differences lead to  different differential equations. While the nonlinear resonance 
mechanisms are modelled by nonlinear terms in the governing equations, the 
parametric resonance mechanism is a linear-like phenomenon in that i t  is modelled 
by linear terms with periodic coefficients resulting from the periodic distortions of the 
mean flow by the fundamental. It is important to note here that because coupling of 
the subharmonic with the fundamental mode is either directly or indirectly involved 
in both types of mechanisms, the phase coupling and wavenumber-frequency 
resonance conditions for the parametric interaction are similar to those required for 
nonlinear interactions. 

Itoh (1977) showed that by decomposing the Fourier components of the stream 
function into a sum of linear eigenfunctions, (3) can be expressed as a wave coupling 
equation of the form 

where A ( f )  is the amplitude of the linear eigenfunction of the component with 
frequency f. 

This coupling equation describes the spectral change of the complex amplitude of 
the frequency component fm due to  linear and quadratically nonlinear mechanisms. 
a(f,) represents the linear growth, and Pkf, is the nonlinear wave-wave coupling 
coefficient. The first step in determining these coefficients and hence the interaction 
physics, is to express (4) in terms of a transfer function equation that models these 
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physics. The coefficients of such an equation are then determined by measuring the 
changes in the complex amplitudes, A (  f ), of the spectral component over a distance 
Ax. Equation (4) can then be transformed to an equation that relates the complex 
amplitude of the wave of frequency f, a t  the downstream location, x+ Ax, linearly 
to  the complex amplitude of the same wave and quadratically to  the complex 
amplitudes of all the interacting waves of frequencies f i  and f,, that add or subtract 
to f,, a t  the upstream location, x, see figure 2. Such a relationship is established by 
expressing (4) as 

(5) 

I n  this equation, Y(  f,) end X( f,) are the complex Fourier amplitudes at frequency 
f, of the fluctuations a t  two points in space in the transitioning mixing layer, see 
figure 2. The quantities L( f,) and Qfzf, are the linear and quadratic elements of the 
transfer function model, respectively, and are generally complex quantities. It is 
important to note here some of the characteristics of these transfer functions. First, 
the quadratic transfer function, unlike the linear transfer function, is a dimensional 
quantity. Second, the complex amplitude a t  the output frequency component is 
dependent on the product of the transfer functions and the complex amplitudes at 
the input frequencies. Third, the parametric reinforcement off, will manifest itself 
as a part of the dynamics represented by the linear portion of the transfer function 
since, as Nayfeh (1987) notes, the parametric approach to the fundamental- 
subharmonic interaction leads to linear equations with periodic or quasi-periodic 
coefficients. The subharmonic problem can thus be reduced to  a simple transfer 
function system that is characterized by a parallel combination of linear and 
quadratically nonlinear transfer functions (see figure 2). Methods to  estimate the 
linear and quadratic transfer functions are given by Kim & Powers (1988) and Ritz 
& Powers (1986). 

Y ( f m )  = L(fm)X(fm) + C C R f , X ( f i ) X ( f j ) ,  f m  = f i  
frffj=fm 

4.2. Wavenumber domain matching 

Instability-wave theory of parallel shear flows models the velocity fluctuations as 
travelling waves whose amplitudes may vary in time and space. The growth of these 
components can be affected by the linear instability mechanisms and by parametric 
and nonlinear interactions of the different components. Cross-bispectral analysis and 
transfer function modelling can be used to  study the characteristics of the energy 
transfer due to these interactions between the different modes in the frequency 
domain. The spatial characteristics and wavenumber-frequency matching con- 
ditions between interacting waves play a particularly important role in this process. 
Bretherton (1964), for example, studied wave triad resonance and amplitude growth 
in a homogeneous medium. For a one-dimensional nonlinear equation, he showed 
that wavenumber resonance as well as frequency resonance is important for two 
modes to interact quadratically to drive a third mode. In the case of mixing layers, 
Monkewitz (1988) set the condition that the fundamental and subharmonic modes 
should travel a t  the same phase speed for an efficient transfer of energy to occur. 
Basically, this requires wavenumber as well as frequency resonance between the two 
modes. This condition was also assumed in the parametric resonance model of Kelly 
(1967). 

Different methods of extracting spatial characteristics from time series data have 
been applied by many investigators. Stegen & Van Atta (1970) used the signals from 
two points separated in space to  measure phase speeds of the Fourier components in 
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grid turbulence. Beall, Kim & Powers (1982) devised a technique to compute the 
local energy spcotrum as a function of frequency and wavenumber, from 
simultaneous measurements of the time series a t  two points in space. From such a 
spectrum, one can then compute the dispersion relationship and the power spectrum 
in the wavenumber domain. I n  the case of transitioning flows, the measurement of 
the phase difference between fluctuations at two points may be random, which 
results in turbulent broadening of the dispersion relation. Thus, the wavenumber 
value as a function of time can be treated as a random variable with a probability 
distribution about a mean for each frequency mode. Wavenumber measurements in 
the present experiments were made using a two-tensor probe as described by Jones 
et al. (1988) and the technique devised by Beall et al. (1982). Notice that the 
separation between the two sensors should be sufficiently small compared to  a 
wavelength and coherence length to avoid spatial aliasing and phase incoherence, 
respectively. For a defined wavenumber, we have 
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(6) 
X(f)  = A m ,  exp Wf) ,  + d(f)>? 
Y ( f )  = A(f),+A,ex~ {i(k(j),+Az + W))}.j 

Since X ( f )  and Y ( f )  are measured simultaneously, the phase $(f) at both points is 
the same. The sample cross-power spectrum is then 

(7)  

1 

x*(f) Y ( f )  = A*(f)zA(f)z+Az exp {i(k(f) Ax)> .  

The sample local wavenumber can then be related to  the local phase of the sample 
cross-power spectrum and is given by 

k(f)  = phase {X*(f) Y ( f ) ) l A x .  (8) 

The computational technique for the wavenumber-frequency spectrum, S ( k ,  f ), the 
wavenumber spectrum S ( k )  and the dispersion relationship are given by Beall et al. 
(1982). In  this investigation, this technique is used to study the spatial characteristics 
of the transition to turbulence in plane mixing layers and in particular the 
parametric resonance mechanism that results in the growth of the subharmonic. 

5. Results and discussion 
The results presented in this paper are based on measurements of the streamwise 

velocity fluctuations a t  cross-stream locations corresponding to the maximum of the 
uims fluctuations. Miksad (1972) presented a detailed evolution of the uim8 profiles for 
the various instability modes involved in the transition process. Estimates of the 
growth rates of the subharmonic and fundamental modes by Miksad (1972) based on 
maximum uims differ only slightly (10% or less) from those determined by cross- 
stream integration of total uims. Measurements made a t  the maximum uims avoid 
problems of riding up or down a modal profile slope, a problem encountered when 
measurements are made a t  a constant cross-stream distance. Jones (1983) showed 
that the cross-stream location of maximum uims also closely coincides with the cross- 
stream location of maximum ufms, which, according to  bispectral analysis marks the 
location where maximum nonlinear or parametric coupling occurs between 
interacting modes. 

The variations of the power spectrum of the streamwise fluctuations in the 
downstream direction, along maximum are shown in figure 6. I n  Region I, a t  
RxIA,  = 1.0, the spectrum exhibits peaks at the fundamental frequency, f,, = 
215 Hz, and its subharmonic, 4 fo. The large energy content a t  the subharmonic mode 



Subhurmonic growth by parametric resonance 395 

10-% 4 
1 o - ~  

I m 

0 100 200 300 400 500 Frequency (Hz) 
L I I I I 
0 0.5 1 .o I .5 2.0 flf, 

1 o - ~  

10-o 

Rx f A, = 2.3 

1 o - ~  

10-o 

I 
Rx f A, = 2.3 

I t 

0 100 200 300 400 500 Frequency (Hz) 
I I I I I 
0 0.5 1 .o 1.5 2.0 flf, 

FIGURE 6. Variations of the power spectrum of the streamwise fluctuations in the downstream 
direction. 

is due to the feedback of energy a t  this frequency from the vortex pairing 
mechanism. By Rxlh, = 1.6 (i.e. Region 11), both the fundamental and subharmonic 
modes have gained energy. Also, the band of fluctuations centred at 2f0 have gained 
a considerable amount of energy. The low-frequency components have also gained 
some energy. By Rx/h, = 2.3 (i.e. Region 111), the fundamental has lost some energy. 
However, the subharmonic continues to grow and the valleys between these modes 
and the other harmonics are filling rapidly. 

The downstream development of the longitudinal fluctuations a t  the fundamental 
and subharmonic frequencies are shown in figure 4. Ho & Huang (1982) showed that 
the saturation of the fundamental corresponds to the vortex roll-up location, and the 
saturation of the subharmonic corresponds to the vortex merging location. I n  their 
experiment, the vortex roll-up occurred at Rxlh, = 2 and the vortex merging at 
Rx/h, = 4. In the present experiments, see figure 4, the fundamental and 
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subharmonic saturations occur a t  Rxlh, = 1.6 and 3.2, respectively. The basic states 
of growth, equilibration and decay of the energy of the longitudinal fluctuations a t  
the subharmonic and fundamental modes are observed and agree with the earlier 
results of Miksad (1972) and Ho & Huang (1982). 
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5.1. Detection of coupled modes 

As the instability modes interact, they become coupled. The characteristics of energy 
transfers between coupled mode components cannot be determined by linear 
analysis. For example, the coherency function for a linear system, defined as 

r"f 1 = E[IX(f) Y(f  )I'Il{E[lX(f )121"(f ) I 2 ] ) ,  
where E[  ...I denotes an expected value, can only describe the linear relationship 
between the input X( f )  and the output Y( f )  at that same frequency. It cannot 
describe the interaction of two different frequency components, X (  fi) and X (  fi) at the 
input, to reinforce a third frequency component Y(f,) a t  the output, such that 
f, = fi k fi. As noted by Powers & Miksad (1987), three-wave interactions can only 
be described by higher-order statistical moments, such as the cross-bispectrum. 

The cross-bispectrum, defined as 

B(fi,fj) = ElY(fm)X*(fi)X*(fi)l, 
where fm = ft+f, is a measure of the statistical dependence between the output 
spectral component a t  frequency f,, Y( fm), and the input spectral components a t  
frequencies fi and fj, X (  fi) and X( fi), where f, = fi kf,. The cross-bispectrum can only 
be non-zero if the frequency modes a t  fi, fi, and f, are statistically dependent. In  the 
case of three-wave interaction phenomena, this statistical dependence arises because 
of the phase coherence between the interacting waves. Thus, the product of the 
complex amplitudes of the three components will have a non-zero average over many 
realizations. The information that can be provided by the cross-bispectrum for the 
problem of subharmonic growth is of particular interest because it provides a means 
for detecting the presence of coupling between the fundamental and its subharmonic. 
A quantitative measure of this coupling is given by the cross-bicoherence squared 

b2(fi, fj) = IP(fi, f~)121{~[lX(fi)X(~~)lzI E[IY(fm)121)I. 

It is important to note that the estimation of cross-bicoherence depends 
significantly on the number of realizations used to form an average. Figure 7, for 
example, shows that for one realization the cross-bicoherence will measure perfect 
coupling between the three modes under consideration. This is because in this case 
there is no averaging and the numerator and denominator are equal. As the number 
of realizations is increased, the level of bicoherence becomes lower. Finally, i t  
converges to a constant value of 0.6 after 256 realizations. The results presented here 
show cross-bicoherence averaged over 256 realizations, each realization consisting of 
128 samples. 

Plots of the cross-bicoherence, along maximum u;,,, a t  different downstream 
locations are shown in figure 8. These locations were chosen to represent the different 
regions of growth of the fundamental and subharmonic modes. The values measured 
at Rxlh, = 0.32 fall in the primary instability region or Region I. Values a t  
RxIA, = 1.6 fall in Region I1 where the fundamental starts to  saturate and the sub- 
harmonic has deviated from its exponential growth. Values shown for RxIA, = 1.9 
and 2.3 fall in the secondary instability region or Region 111. The results show that in 
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region I, at Rxlh, = 0.32, the strongest peak occurs at (f,, -if,). This shows 
that the fundamental mode and its subharmonic are phase coherent. This early phase 
coherence is the result of the feedback of energy from the downstream position where 
the subharmonic is emerging (vortex pairing is occurring), as suggested by Corke 
(1987). Although the phase coherency implies the possibility of nonlinear or 
parametric interaction and transfer of energy, we are still in the region of exponential 
growth where both modes are still growing a t  the linear rate predicted by the linear 
instability theory. The nonlinear effects are still minimal. 

In Region 11, at Rxlh, = 1.6, the highest level of bicoherence appears at (to, f,) and 
(2f0, -fo) which indicates the production of the second harmonic via the self- 
interaction of the fundamental mode, as evidenced from the power spectra. Also, a 
new bicoherence pattern emerges where the contour level bands extend, away from 
(f,, fo) and (Zf,, -fo), to include fluctuations at (f,, fo - Sf) and (f, + b'f, f,) in the sum 
region and (2f0 +Sf, -fo) and (2f, & Sf, -fo + Sf) in the difference region. These 
sideband bicoherencies indicate that the fundamental is coupling with fluctuations in 
its skirts to broaden the second harmonic. Note also the bicoherency between the 
fundamental and the subharmonic, (f,, &if,), and the fundamental and the t 
harmonic, (f,, +ifo). However, it is important to note that the level of bicoherence 
between the fundamental and its subharmonic, (f,, -if,), is lower in this region than 
in Region I. Note also that figure 4 shows that, in Region 11, the subharmonic has 
deviated from exponential growth and started to equilibrate. Therefore, it appears 
that this equilibration of the subharmonic is accompanied by a reduction in the 
phase coherence between itself and the fundamental. 

A t  the beginning of Region 111, Rxlh, = 1.9, where the subharmonic starts its 
second region of growth, the bicoherence level at  (f,, -if,) is larger than that in 
Region 11. This indicates that the growth of the subharmonic, in Region 111, is 
accompanied by an increase in the level of its phase coupling with the fundamental. 
The above bispectral results demonstrate that the fundamental and subharmonic 
modes are phase-coupled over Regions I, 11, and 111 of the transition. In Region I, 
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FIGURE 8. Cross-bicoherence spectra, b*( f , .  fj), of the longitudinal fluctuations at different 
downstream locations that correspond to the different regions shown in figure 4. Contour levels 
are set at 0.3, 0.6, and 0.9. ( a )  Region I, Rs/h,  = 0.32; ( b )  Region 11, Rx/A ,  = 1.6; (c) Region 111, 
RxIA, = 1.9; ( d )  Region IV, Rx/Ao = 2.3. 

the coupling is a result of the feedback of energy a t  the fundamental and 
subharmonic frequencies from the vortex pairing (Corke 1987). In  Region 11, the 
level of bicoherence becomes lower as the fundamental starts to equilibrate and the 
growth rate of the subharmonic modc deviates from its initial exponential growth 
rate. As the subharmonic starts its second stage of growth in Region 111, the level of 
bicoherence increases again. The existence of phase coupling between the 
fundamental mode, f,,, and its subharmonic, t f,,, provides a first step in establishing 
evidence of a nonlinear coupling or parametric resonance between the fundamental 
and its subharmonic. 
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5.2. Linear and quadratic energy transfer analysis 
The cross-bicoherence analysis provides experimental evidence of the coupling 
between the fluctuations at the fundamental and subharmonic modes. However, 
cross-bicoherence measurements alone cannot provide information on the nature and 
efficiency of the coupling and its role in transferring energy to  the subharmonic. It 
also cannot determine whether the measured three-wave couplings are due to 
interactions occurring a t  the location of measurement or are due to earlier upstream 
interactions which are advected past the probe by the flow. These questions can, to  
some extent, be answered by measuring the linear and quadratic transfer functions 
as shown in (5), see also figure 2. If we denote the output of the linear and quadratic 
transfer functions a t  frequency f, by YL and YQ, respectively, the model output a t  
frequency f, is then given by 

Ritz & Powers (1986) used an iterative approach in the discrete frequency domain 
to estimate the linear and quadratic transfer functions. A more general approach by 
Kim & Powers (1988) that  does not require iteration was used in our estimates of the 
linear and quadratic transfer functions. I n  this approach, the transfer functions are 
determined by solving two moment equations : 

and 

where f, = fi f, = fk f i .  Note that these two equations permit one to  express the 
linear transfer function, L( f,), and the quadratic transfer function, efj in terms of 
the various polyspectral moments that can be calculated from the Fourier 
Transforms of the input and output signals, respectively given by the upstream and 
downstream sensors of the probe. For example, the two terms on the left-hand sides 
of (10) and (11)  are the cross-power spectrum S,,(f,) = E[Y(f , )X*(f , ) ]  and the 
cross-bispectrum Suzz(fk,  f,) = E[ Y( f , )X*( fk )X*( f i ) ] .  The terms on the right-hand 
sides are a hierarchy of spectral moments, specifically, the auto-power spectrum 

and a fourth-order spectral moment of the input E[X(f,)X(f,)X*(f,)X*(f,)]. 

the output spectrum, SyJ f,), as 

&,(.fm) = E[X(fm)X*(fm)l ,  the auto-bispectrum S,,,(fk, f,) = E[X(f,)X*(fk)X*(f,)l 

Once the linear and padra t ic  transfer functions are determined, one can predict 



and 

The 'predicted' output power spectrum is then the sum of the linear power spectrum, 
S,( f,), the 'quadratic ' power spectrum, S,(f,), and a linear-quadratic power 
spectrum, SLQ( f,). It is important to note here that, in the set-up of the probe used 
in these experiments, the output power Suu( f,) includes the input power S,,(f,) 
which is advected by the mean flow from the first sensor to the second sensor. 
Because our interest is in the local characteristics of the linear and nonlinear growth 
mechanisms, we subtract the input power from the output power and consider only 
the change in the power spectrum, AS( f ), between the two streamwise locations : 

Wf,) = &(f,) -Sz , ( fm)  = Sdf,) - ~ z * ( f m )  +S,(f,) +S,,(fm) 
= [I~(f,)I2 - 11 S,,(f,) + S,(f,) + S,,(f,) 

= mf,) +S,(f,) +SL,(f,)? (13) 

where SL(fm) = [ ~ L ( f , ) ~ z -  l]S,,(f,). I n  this equation, the change in the energy 
content of the mode with frequency f ,  is divided into three parts, namely the linear, 
quadratic, and linear-quadratic changes. 

A power transfer rate, T2(fm), can then be defined as the ratio of the estimated 
change in the energy of the mode with frequency f ,  and the actual input energy of 
that mode over the distance Ax, AS(f,)/(S,,(f,) Ax). The power transfer rate can 
then be divided into three parts, namely the linear power transfer rate, 7T(fm) = 
[IL(f,)I2 - 11, the quadratic power transfer rate, 73f,), and the linear-quadratic 
power transfer rate, Tfg( f,). These are given as the ratios of S;(f,), S,(f,) andS,,(f,) 
over IS',,( f m ) ,  respectively. For a perfect system with no errors, all the energy change 
is accounted for by the three parts and the power transfer rate is equal to one. Also, 
as noted in $4, the linear transfer component, ~;(f,), includes the effect of the linear 
growth and the energy transfer via the parametric mechanism to the mode of 
frequency f,. The transfer of energy via nonlinear resonance of two input modes fi 
and fj to  an output mode a t  f ,  is included in the quadratic power transfer 
component, Ti (  f,). 

5.2.1. Quadratic energy transfer 

As noted in $4, the nonlinear transfer of energy from two input modes fi and f, to 
an output mode a t  f ,  depends on the quadratic transfer function afj. This quantity 
is a complex function with amplitude and phase. From ( 5 ) ,  it can be shown that the 
quadratic transfer function is given by * f, = ( Y ( f ,  1 - W m )  X(f,) ) / X ( f i )  Wf,) 3 f ,  = f i  +f,. (14) 

Note that the quadratic transfer function is inversely dependent on the amplitudes 
of input modes, X ( f i )  and X(f , ) .  Figure 9 shows the logarithmic contour plots of the 
magnitude of the quadratic transfer functions, lQ$zf,12, measured a t  locations that 
correspond t o  the four regions defined above. Note that the overall details of lQ$:fr12 
plots change gradually in the downstream direction. For instance, the magnitude of 
the quadratic transfer function is very low at  ( f , ,  -if,), a t  each downstream 
location. From (14), it is evident that this is in part due to the fact that the energy 
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FIGURE 9. Logarithmic contour plots of the magnitude of the quadratic transfer functions, l~~,,l*, 
of the longitudinal fluctuations at different downstream locations that correspond to the different 
regions shown in figure 4. Contour levels are set at 0.5, 1.5, and 2.5. (a )  Region I, Rx/h,  = 0.32; ( b )  
Region 11. Rx/h,  = 1.6; ( c )  Region 111, Rxjh,  = 2 .6 ;  ( d )  Region IV, Rx/A, = 3.2. 

of the input modes at  fo and ifo is large. However, it is important to note that, 
although the large energy levels a t  fo, fo and $fo are comparable, the magnitude of 
the quadratic transfer function is larger a t  (tf,, -fo) and (2f0, -fo) than at (f,, -ifo).  
This suggests that the efficiency of the quadratic energy transfer via nonlinear 
resonance is larger for the (tf,, -fo) and (2fo, -fo) interactions than for the (f,, -if,) 
(i.e. fundamental-subharmonic) interaction. The sensitivity of the quadratic 
transfer function to the energy level of the input modes is also apparent from the fact 
that, a t  all downstream locations, measured values of the quadratic transfer function 
magnitude are typically large for pairs of frequency components that have low input 
energy. This effect stems from the fact that the quadratic transfer function is 
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dimensional, as evident by (la), and is inversely dependent on the energy level of the 
interacting modes. 

Miksad, Hajj & Powers (1989) proposed that a good measure of the amplitude 
dependence of ef, is given by the magnitude of the coupled input energy level, 
w(f i )X( j , )12 ,  which will be referred to as the 'interaction potential '. This quantity is 
a measure of the potential amount of energy that interacting modes have for 
nonlinear energy transfer. Low-energy modes have less energy to transfer to  a third 
mode than high-energy modes do. Figure 10 shows the frequency domain distribution 
of the interaction potential at four downstream locations that correspond to  the 
different regions of the transition, as defined in $3.  Note that the upper and lower 
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FIQURE 11.  Contours of the weighted non-dimensional quadratic transfer functions, q 2 ( f i ,  f,), of the 
longitudinal fluctuations along max uimS under natural excitation at different downstream 
locations that correspond to the different regions shown in figure 4. Contour levels are set at 0.3, 
0.6, and 0.9. (a)  Region I, Rx/A, = 0.32;  (b )  Region 11, Rx/h, = 1.6; ( c )  Region 111, Rx/h, = 2.6;  
( d )  Region IV, RxIA, = 3.2.  

triangular regions are symmetrical, since X (  -f) = X * ( f )  and therefore IX( - f ) 1 2  = 
K(j)12. Note that in Region 11, most of the interaction potential is centred a t  
(jotfa) indicating a significant input potential for the transfer of energy to the first 
harmonic. The actual energy transfer the first harmonic can be clearly seen in the 
power spectra and bicoherence plots. The large interaction potential a t  (to, -ifo) 
indicates that significant energy transfer to the subharmonic can also occur in these 
regions. 

A measure of nonlinear energy transfer can be obtained by weighting the 
dimensional quadratic transfer function, %f,, by the energy potential of the 
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interacting input modes, IX(f i )  X( fj)I2, to obtain a non-dimensional quadratic transfer 
function such as 

(15) 

Contour plots of the weighted non-dimensional transfer functions, along maximum 
u:,,, are shown in figure 11.  Pairs that show high Q'2(fi ,  fi) characterize those 
interactions which are potentially most efficient in transferring energy. Note that, a t  
Rxlh, = 0.32, there are no indications of any prospect for energy transfer between 
any components. This location corresponds to Region I, the region of primary 
instability. These results agree with the predictions of the linear stability theory that 
all modes grow independently in the early region of the transition. More important 
to the question of subharmonic generation is the fact that  although the cross- 
bicoherency plots indicate nonlinear coupling starting at  Rx/A, = 0.32, the [ & ' I 2  
measurements indicate that the prospect for quadratic energy transfer to the 
subharmonic in this region is not significant. This demonstrates that the growth of 
the subharmonic in Region I is not due to a nonlinear interaction mechanism. The 
first involvement of the subharmonic in nonlinear interaction appears in the sum 
region at Rxlh, = 1.6, a t  the end of Region 11. Recall that by this location, the 
fundamental has started to equilibrate and the subharmonic growth rate has 
deviated from its initial exponential growth. However, the involvement of the 
subharmonic component in nonlinear energy transfer does not become significant 
until Rx/AO = 2.6, where the contour levels of 1Q'I2 at  ( f , ,  -if,) and (if,, - f o )  are 
larger than a t  earlier locations. This indicates that, up to this location, the prospect 
for quadratic energy transfer to  the subharmonic is very low. Further downstream, 
at  Rxlh, = 3.2 in Region 111, the subharmonic, the fundamental and their harmonics 
have entered into a wide variety of interactions with other fluctuations and the 1 Q I 2  
contours indicate the initiation of a redistribution of subharmonic and fundamental 
mode energy to  the different components of the flow. 

5.2.2. Linear and parametric energy transfer 
The above measurements of the quadratic transfer function and its weighted non- 

dimensional function show an important result. Both the quadratic transfer 
function, [& I2 ,  and its weighted form, 1Q'I2 show large magnitudes a t  (2f0, - f,). This 
indicates efficient transfer of energy between these modes. On the other hand, the 
level of the magnitudes of these functions at the fundamental-subharmonic, ( f,, 
-4 f,), indicate that the prospects for quadratic transfer of energy due to  nonlinear 
resonance from the fundamental to the subharmonic are low. The question that 
arises is then: What is the role of the linear transfer function that includes the 
parametric effects on the growth of the subharmonic 1 This question can be answered 
by examining the linear transfer function and its role in the transfer of energy to  the 
subharmonic and by comparing it to the corresponding role of the quadratic transfer 
function. 

harmonic due to  linear 
and linear-like effects, at different downstream locations, are given by the plot of the 
linear power transfer rate, 7;(fm), as shown in figure 12. Note that, in Region I, the 
linear power transfer rates of the three modes are constant and equal to the growth 
rates as predicted by the linear instability theory of Monkewitz 8z Huerre (1982). In 
Region 11, between Rxlh, = 1.0 and Rx/h, = 1.6, the level of the linear power 
transfer rate, 7f(fm), of these modes starts to decrease. This decrease in the growth 
of these modes is expected because of the spreading of the mixing layer. Beyond 

V C f t , f j )  = E[I%~,I~ ( ~ ~ ( f i ) ~ ( j j ) I ~ ) ) " l >  f m  = f i  *fj. 

The growth rate of the fundamental, subharmonic and 
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FIQURE 12. Linear power transfer rate, 73f), of the fundamental, fo (-+-), the subharmonic, 
!jf,(-m-) and the 4 harmonic, if ( - - - )  vs. downstream distance. 

Region 11, only the linear power transfer of the subharmonic and $ harmonic are 
shown. The fundamental growth is negative and therefore is not shown. In Region 
111, between RxIA, = 1.6 and Rxlh, = 2.6, the linear power transfer rate, 7F(fm), of 
the a harmonic continues to decrease. In contrast, the linear power transfer rate of 
the subharmonic increases. Only a linear-like mechanism, such as the parametric 
mechanism, may explain the increase in the linear power transfer rate of the 
subharmonic. These results indicate that the growth of the subharmonic in Region 
111 is accompanied by an increase in the linear transfer of power as a result of the 
parametric resonance mechanism. 

The total energy change of the subharmonic, AS(ifo) at different downstream 
locations is shown in figure 13(a). Also shown on the same plot are the portions of 
AS(+fo)  that are due to linear and quadratic effects, AS,(+!,) and S,(+ f,), respectively. 
Since the parametric resonance mechanism is a linear-like mechanism, its activity 
will appear in the linear term of (5) .  The transfer of energy to the subharmonic due 
to nonlinear interactions, SQ(&f,) ,  is two to three orders of magnitude less than the 
energy transfer by parametric linear-like mechanisms, S,($ f,). Although both 
parametric and nonlinear mechanisms are simultaneously Influencing the sub- 
harmonic, the results clearly show that the change in the power of the subharmonic 
mode is mainly due to a parametric resonance and only small nonlinear effects are 
present. 

The nature of the energy transfer to the g harmonic in Region I11 stands in 
contrast to that of the subharmonic. Figure 13(b) shows the total output energy 
change of the 4 harmonic, AS($f,) at different downstream locations. The 
contributions of S,(:f,) and SQ(!fo) to the overall energy change, AS($fo), are also 
shown on the same figure. Note that in Region I the linear energy transfer to if,, 
S,($f,), is dominant. However, as we move further downstream to Region 111, 
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FIGURE 13(a, b ) .  For caption see facing page. 

quadratic energy transfer to t fo, S,($ f,,), becomes the dominant factor. This suggests 
that nonlinear interactions are more important in Region I11 in transferring energy 
to $fo than are parametric or linear mechanisms. 

The differences between the mechanisms responsible for the energy transfer to  the 
subharmonic and to the $ harmonic are also evident in the comparisons of the ratio 
of the quadratic to  linear contributions, S,/S,, for i f o  and ifo at the different 
downstream locations, as shown in figure 13 (c). Notice that while this ratio is of the 
order of 0.001 to  0.01 in the case of the subharmonic, a f o ,  it is of the order of 0.1 to  
10 in the case of $ f o ,  depending on the downstream location. This again suggests that, 
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FIGURE 13. (a) Total power change, M(ff,), and linear and quadratic power transfer, S,(ff,) and 
s,(+f,), respectively, vs. downstream distance ; and Total power change, AS($f,), and linear and 
quadratic power transfer, S,($f,) and s,($f,), respectively, vs. downstream distance (-m-, M ; 
--I-, 8,; -4-, SQ). ( c )  Ratio of quadratic to linear power transfer rate of the subharmonic. if, 
(-4-), and the $ harmonic, $fo  (-m-) vs. downstream distance. 

in Region 111, nonlinear interactions are primarily responsible for the growth of $ f o  
and that parametric effects are primarily responsible for subharmonic growth. 

5.3. Wavenumber-f requenc y matching 
The spatial characteristics of the transitioning mixing layer are obtained using the 
technique described in 54. These characteristics are seen in the estimates of the local 
wavenumber-frequency spectra S(k, f )  that are shown in figure 14. From these plots 
we can detect some features of the dispersion relationship. At Rxlh, = 0.32, only the 
fundamental and subharmonic modes have a definite dispersion relationship. By 
Rxlh, = 1.6, we notice the generation of the second harmonic. Also notice that the 
harmonic bands, a t  fo, i f o  and 2f0 are confined to a relatively narrow range of 
wavenumbers. By RxIA, = 2.3, we notice the broadening of the spectrum along the 
harmonic components and the valleys. 

In order to gain better insight into the spatial characteristics of the different 
components of the flow, plots of the local wavenumber spectra are shown in figure 15. 
In  the primary instability region or Region I, at Rxlh, = 1.0, most of the energy is 
contained in a band of wavenumbers centred at k, = 3.4 rad/cm, which corresponds 
to a wavelength of 1.83 cm. This value is very close to  the wavelength of the 
fundamental instability, A, = 1.98 cm. By RxIA, = 2.3, or in Region 11, different 
wavenumber components have gained some energy, leading to  broadening of the 
spectrum. In Region 111, between RxlA, = 2.6 and 3.2, the wavenumber spectra 
show that most of the energy is contained in a band of wavenumbers centred a t  
k = 1.7 rad/cm (= ik,), which is half the value at which the initial peak is located. 
Therefore, as the maximum energy in the frequency spectrum, in figure 6, shifts from 
fo to $ fo, the peak in the wavenumber spectra, in figure 15, shifts from k, to  $k,. This 
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FIQURE 14. Wavenumber-frequency spectra, S( k, f), of the longitudinal fluctuations at different 
downstream locations that correspond to the different regions shown in figure 4. Contour levels are 
set at (a) Rx/A, = 0.32; ( b )  1.6; (c) 2.3; ( d )  3.2. and 

shift occurs after the primary instability region of the transition, and coincides with 
the second region of subharmonic growth. The merging of the two vortices reduces 
the frequency of their passage from fo to ifo and increases their characteristic size 
from 1, = 27c/k, to 21,. The shifting of the centre of the band from k, to  ik, represents 
an increase in the characteristic size of the vortices and therefore provides a spatial 
indication of the vortex merging process. 

An important condition for parametric resonance to take place is that  the 
subharmonic and the fundamental modes travel at the same phase speed. This 
condition was assumed by Kelly (1967) and postulated by Monkewitz (1988). Figure 
16 shows the variation of the normalized phase speeds, ( w / k ) / o ,  of the fundamental 
and the subharmonic in the downstream direction. Notice the good matching 
between the two modes beyond Rxlh, = 1.6 (i.e. Region 111). This shows that the 
condition of wavenumber resonance is satisfied beyond the initial region of growth 
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FIGURE 15. Wavenumber spectra of the longitudinal fluctuations at downstream locations that 
correspond to the different regions shown in figure 4. 

of the subharmonic. This is in agreement with the requirements of the analysis of 
Kelly (1967) and Monkewitz (1988). 

Monkewitz (1988) showed that the amplitude of the fundamental mode must 
attain a critical value before it becomes phase locked with the subharmonic and the 
growth rate of the subharmonic is modified. At this location the phase speed of the 
subharmonic is close to unity, i.e. the phase speed of the neutral fundamental. 
Monkewitz (1988) also showed that when the fundamental amplitude is larger than 
or equal to  the critical amplitude, the growth of the subharmonic and its phase speed 
are dependent on the phase difference, A$, between the fundamental and the 
subharmonic (see figures 6 and 7 in Monkewitz 1988). These figures show that the 
optimal conditions for the subharmonic growth occur when the phase difference 
between the two modes is close to zero. Monkewitz also showed that when the 
fundamental amplitude is decreasing, the growth of the subharmonic is enhanced 
regardless of the initial phase difference (see figure 9 in Monkewitz 1988). The results 
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FIGURE 16. Downstream variations of the normalized phase speed, CJa, of the fundamental 
(-+-) and subharmonic (-m-) modes. 
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FIGURE 17. Downstream variations of the phase difference, A$, between the fundamental and 
subharmonic modes. 
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of our experiments show that when the fundamental reaches its critical amplitude 
the growth rate of the subharmonic is decreasing, the phase speed of the subharmonic 
is not equal to unity and the energy transfer between the fundamental and the 
subharmonic is not efficient. However, these conditions for the subharmonic growth 
are met further downstream, beyond Rxlh, = 1.6. Figure 17 shows the variation in 
the phase difference between the fundamental and the subharmonic in the 
downstream direction. At Rxlh, = 1.0, where the fundamental amplitude is close to 
the critical amplitude, the phase difference between the fundamental and the 
subharmonic close to zero. By comparison to figure 6 of Monkewitz (1988), we note 
that at this phase difference, the growth of the subharmonic is suppressed over a 
small distance before it starts growing again. The reduced growth rate a t  Rxlh, = 
1.0 agrees with the predictions of Monkewitz (1988). At Rx/Ao = 1.6, where the 
fundamental amplitude is equal to five times the critical amplitude, the phase 
difference is still close to zero. By comparison with figure 7 of Monkewitz (1988), we 
note that the subharmonic growth is reduced at this phase angle. This also agrees 
with the reduced growth rate a t  this location as seen in figure 4. This reduced growth 
is also due to the low bicoherence (figure 7)  which indicates low coupling and large 
phase difference variations. Further downstream, a t  Rxlh, = 2.3,  the amplitude of 
the fundamental is equal to  twice that of the critical amplitude. The subharmonic 
amplitude is increasing significantly. However the fundamental amplitude is 
decreasing. By comparison with figure 9 of Monkewitz (1988), we note that the 
subharmonic should be growing a t  any phase difference. This result also agrees with 
the energy transfer measurements that  show efficient energy transfer from the 
fundamental to the subharmonic a t  this location. 

6. Conclusions 
The nonlinear and parametric characteristics that are associated with the 

subharmonic generation in the transition to  turbulence in plane mixing layers are 
detected and quantified. In  the primary instability region of the transition, all 
instability modes, including the subharmonic, grow independently. No significant 
transfer of energy between any modes is detected. Measurements of the power 
spectra and the associated linear and quadratic transfer functions show that beyond 
this initial region, the spatial growth of the subharmonic supports the parametric 
approach which is described by a linear model with varying time coefficients. On the 
other hand, the same measurements show that the growth of 2f0 and ifo is best 
described by the quadratic nonlinear interaction approach. The growth rate of the 
subharmonic starts modifying about the location where Rxlh, z 1. At this location, 
the fundamental amplitude is equal to 0.0120 and has not yet started to  saturate. 
This shows that the parametric resonance between the fundamental and the 
subharmonic can start to affect subharmonic growth before the fundamental reaches 
its saturation amplitude. However, the most efficient transfer of energy to  the 
subharmonic occurs further downstream as the fundamental mode reaches an 
amplitude close to its saturation amplitude. Measurements also indicate that the 
fundamental, besides interacting with the subharmonic, is also engaged in 
redistributing its energy via nonlinear interactions to other components such as the 
first harmonic and the valleys. Local wavenumber measurements verify that 
frequency-wavenumber resonance matching conditions exist between the fun- 
damental and subharmonic in regions where efficient energy exchange t o  the 
subharmonic takes place. These results are in general agreement with theoretical 
models by Kelly (1967) and Monkewitz (1988). 
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